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Abstract

This study tested four sensitivity analysis methods: (1) local analysis using parameter
estimation software (PEST), (2) regional sensitivity analysis (RSA), (3) analysis of vari-
ance (ANOVA), and (4) Sobol’s method to identify sensitivity tools that will advance our
understanding of lumped hydrologic models for the purposes of model improvement,5

calibration efficiency and improved measurement schemes. The methods’ relative ef-
ficiencies and effectiveness have been analyzed and compared. These four sensitiv-
ity methods were applied to the lumped Sacramento soil moisture accounting model
(SAC-SMA) coupled with SNOW-17. Results from this study characterize model sensi-
tivities for two medium sized watersheds within the Juniata River Basin in Pennsylvania,10

USA. Comparative results for the 4 sensitivity methods are presented for a 3-year time
series with 1 h, 6 h, and 24 h time intervals. The results of this study show that model
parameter sensitivities are heavily impacted by the choice of analysis method as well
as the model time interval. Differences between the two adjacent watersheds also
suggest strong influences of local physical characteristics on the sensitivity methods’15

results. This study also contributes a comprehensive assessment of the repeatabil-
ity, robustness, efficiency, and ease-of-implementation of the four sensitivity methods.
Overall ANOVA and Sobol’s method were shown to be superior to RSA and PEST.
Relative to one another, ANOVA has reduced computational requirements and Sobol’s
method yielded more robust sensitivity rankings.20

1 Introduction

In this paper we apply and evaluate the differences between four popular sensitivity
analysis methods, selected to represent the variety of methods currently used. The
four sensitivity analysis methods include: (1) local analysis using the parameter esti-
mation software (PEST), (2) regional sensitivity analysis (RSA), (3) analysis of variance25

(ANOVA), and (4) Sobol’s method. The methods are applied to the Sacramento soil
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moisture accounting model, a medium complexity spatially lumped rainfall-runoff model
used for river forecasting throughout the USA. The model is implemented in two water-
sheds in the Susquehanna River Basin in Pennsylvania and run at hourly, six hourly,
and daily time steps.

Broadly, models of watershed hydrology are irreplaceable components of water re-5

sources studies including flood and drought prediction, water resource assessment, cli-
mate and land use change impacts, or non-point source pollution analysis (e.g., Singh
and Woolhiser, 2002). Hydrologic models are evolving from single purpose tools to
complex decision support systems that can perform all (or at least many) of the tasks
mentioned above in a single software package. In many cases, hydrologists are moving10

towards models of highly complex environmental systems that include close coupling
of surface and groundwater flow processes, feedbacks with the atmosphere, transport
of water and solutes, and spatially explicit representations of system characteristics
and states (e.g., Duffy, 1996, 2004). In integrated assessment applications models
may even include socioeconomic components to integrate human behavior (Wagener15

et al., 2005). In general, hydrologic models are highly non-linear, contain thresholds,
and often have significant parameter interactions. These properties make it difficult to
evaluate how models of hydrologic systems behave and which parameters control this
behavior during different response modes (e.g., Demaria et al., 2006). The increasing
trend towards more complex models and its potential consequences in terms of compu-20

tational constraints and obfuscating model impacts on decision making motivates the
need for enhanced model identification and evaluation tools (Beven and Freer, 2001;
Vrugt et al., 2003; Saltelli et al., 2004; Wagener and Kollat, 2006).

Hydrologic models play an important role in elucidating the dominant controls on wa-
tershed behavior and in this context it is important for hydrologists to identify the domi-25

nant parameters controlling model behavior. One approach to gain this understanding
is through the use of sensitivity analysis, which evaluates the parameter’s impacts on
the model response (Hornberger and Spear, 1981; Freer et al., 1996; Wagener et al.,
2001; Liang and Guo, 2003; Hall et al., 2005; Pappenberger et al., 2005; Sieber and
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Uhlenbrook, 2005). Sensitivity analysis results can be used to decide which parame-
ters should be the focus of model calibration efforts, or even as an analysis tool to test if
the model behaves according to underlying assumptions (e.g., Wagener et al., 2003).
Ultimately, sensitivity methods should serve as diagnostic tools that help to improve
mathematical models and potentially help us to identify where gaps in our knowledge5

are most severe and are most strongly affecting prediction uncertainty. Data gaps are
particularly important in the context of guiding field measurement campaigns (Lang-
bein, 1979; Moss, 1979; Wagener and Kollat, 2006; Reed et al., 2006). Section 2
provides a more detailed review of existing sensitivity analysis methods and a detailed
discussion of the four methods compared in this study.10

2 Sensitivity analysis tools and sampling schemes

2.1 Overview

Model sensitivity analysis charaterizes the impact that changes in model inputs have
on the model outputs in a strict sense. Sensitivity measures are determined mathemat-
ically, statistically, or even graphically. There are several prior studies that have broadly15

reviewed and classified the sensitivity analysis methods that exist (Saltelli et al., 2000,
2004; Helton and Davis, 2003; Oakley and O’Hagan, 2004; Frey and Patil, 2002; Chris-
tiaens and Feyen, 2002). Any sensitivity analysis approach can be broken up into to
two components (Wagener and Kollat, 2006): (1) a strategy for sampling the model
parameter space (and/or state variable space), and (2) a numerical or visual measure20

to quantify the impacts of sampled parameters on the model output of interest. The im-
plementation of these two components varies immensely (e.g., Freer et al., 1996; Frey
and Patil, 2002; Hamby, 1994; Patil and Frey, 2004; Pappenberger et al., 2006; Vande-
berghe et al., 2006), and guidance is currently lacking to help modelers decide which
approach is best suited to the needs of a particular study. Generally, the approaches25

can be categorized into two main groups – local methods and global methods (Saltelli
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et al., 1999; Muleta and Nicklow, 2005).
The nominal range and differential analysis methods are two well known local pa-

rameter sensitivity analysis methods (Frey and Patil, 2002; Helton and Davis, 2003).
Nominal range sensitivity analysis calculates the percentage change of outputs due to
the change of model inputs relative to their baseline (nominal) values. The percent-5

age change is seen as the sensitivity of the corresponding input. Differential analysis
utilizes partial derivatives of the model outputs with respect to the perturbations of the
model input. The derivative values are themselves the metrics of sensitivity. Further
analysis can be conducted by approximating the simulation model using Taylor’s series
(Helton and Davis, 2003).10

The nominal range and differential analysis methods have the advantages of being
straightforward to implement while maintaining modest computational demands. The
major drawback of these methods is their inability to account for parameter interactions,
making them prone to underestimating true model sensitivities. Alternatively, global
parameter sensitivity analysis methods vary all of a model’s parameters in predefined15

regions to quantify their importance and potentially the importance of parameter inter-
actions.

There are a variety of global sensitivity analysis methods such as regional sensitivity
analysis (RSA) (Young, 1978; Hornberger and Spear, 1981), variance based methods
(Saltelli et al., 2000), regression based approaches (Spear et al., 1994; Helton and20

Davis, 2002), and Bayesian sensitivity analysis (Oakley and O’Hagan, 2004). Global
methods attempt to explore the full parameter space within pre-defined feasible pa-
rameter ranges. In this paper, our goal is to test a suite of sensitivity methods and
discuss their relative benefits and limitations for advancing lumped watershed model
identification and evaluation.25

The four sensitivity analysis approaches which include PEST, RSA, analysis of vari-
ance (ANOVA), and Sobol’s method were selected for comparison due to their popu-
larity and large number of applications (Doherty, 2003; Doherty and Johnston, 2003;
Moore and Doherty, 2005; Wagener et al., 2003; Lence and Takyi, 1992; Freer et al.,
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1996; Pappenberger et al., 2005; Mokhtari and Frey, 2005; Sobol’, 1993, 2001; Fieberg
and Jenkins, 2005; Hall et al., 2005). The sensitivity analysis methods tested in this
study range from local to global and capture a broad range of analysis methodologies
(differential analysis, RSA, and variance-based analysis). The main characteristics of
these four methods are summarized in Table 1. In Sect. 2.2, each of these approaches5

and the associated statistical sampling schemes used in this study are discussed in
more detail. In the context of this paper we assume that the selection of an appropri-
ate numerical measure, is satisfied through two chosen objective functions based on
the root mean square error (RMSE) (see 5.2). Readers interested in how parameter
sensitivity changes with different objective functions can reference the following studies10

(Wagener et al., 2001; Demaria et al., 2006).

2.2 Sensitivity analysis tools

2.2.1 PEST

PEST, which stands for parameter estimation, is a model independent nonlinear pa-
rameter estimation tool (Doherty, 2003; Doherty and Johnston, 2003; Doherty, 2004;15

Moore and Doherty, 2005). PEST was developed to facilitate data interpretation, model
calibration and predictive analysis. Like many other parameter estimation or model cal-
ibration tools, PEST aims to match the model simulation with an observed set of data
by minimizing the weighted sum of squared differences between the two. The opti-
mization problem is iteratively solved by linearizing the relationship between a model’s20

output and its parameters. The linearization is conducted using a Taylor series expan-
sion where the partial derivatives of each model output with respect to every parameter
must be calculated at every iteration. For each iteration, the solution of the linearized
problem is the current optimal set of parameters. The current optimal set is then com-
pared to that of the previous time step to determine when to terminate the optimization25

process. During the linearization step, the forward difference or central difference op-
erators can be used for calculating the derivatives. Parameter ranges, initial parameter
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values, and parameter increments must be provided by the user. The parameter vector
is updated at each step using the Gauss-Marquardt-Levenberg algorithm (Marquardt,
1963; Levenberg, 1944). The derivatives of the model outputs with respect to its pa-
rameters are calculated and provide a measure of the parameter sensitivities at each
iteration. The “composite sensitivity” is provided by PEST as a byproduct of the pa-5

rameter estimation results. Equation (1) defines the composite sensitivity of parameter
i :

si = (JtQJ)
1/2
i i /m (1)

where J is the Jacobean matrix and Q is the cofactor matrix which in most cases is a
diagonal matrix whose elements are composed of squared weights for model outputs.10

If the model outputs are equally weighted, Q is equal to the identity matrix. The number
of outputs, m, is the number of data records in the time series in this study. Thus si is
the normalized magnitude of the Jacobean matrix column with respect to parameter i .
As expected for a local sensitivity analysis method, Eq. (1) is a univariate analysis of
parameter impacts on model outputs (i.e., no parameter interactions are considered).15

2.2.2 Regional sensitivity analysis using Latin hypercube sampling

RSA (Young, 1978; Hornberger and Spear, 1981) is also called generalized sensitivity
analysis (GSA) (Freer et al., 1996) and has been widely used in hydrology (e.g. Lence
and Takyi, 1992; Spear et al., 1994; Freer et al., 1996; Pappenberger et al., 2005;
Sieber and Uhlenbrook, 2005; Ratto et al., 2006). Monte Carlo sampling and “behav-20

ioral/nonbehavioral” partitioning are the two major components of this method. Monte
Carlo sampling is used to generate n parameter sets in the feasible parameter space
defined using a multi-variate uniform distribution. After model evaluations using these
parameters, the sets of parameters are decomposed into two separate groups (behav-
ioral/good and nonbehavioral/bad) according to the model’s performance or behavior.25

RSA identifies the difference between the underlying distributions of the behavioral and
nonbehavioral groups. Either graphical methods (e.g., marginal cumulative distribution
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function plots) or statistical methods such as Kolmogorov-Smirnov (KS) testing (Kot-
tegoda and Rosso, 1997) are then used to characterize if a parameter significantly
impacts behavioral results.

Freer et al. (1996) extended the original RSA by breaking the behavioral parameter
sets into ten equally sized groups. (Wagener et al., 2001) modified this approach5

further by including all parameter sets and avoiding the need to specify behavioral and
non-behavioral sets. Instead, the population is divided into ten bins of equal size based
on a sorted model performance measure (Wagener and Kollat, 2006). Conclusions
about parameter sensitivities are made qualitatively by examining differences in the
marginal cumulative distributions of a parameter within each of the ten groups. If the ten10

lines with respect to ten different groups are clustered, the parameter is not sensitive
to a specific model performance measure, i.e., there is no difference in underlying
distribution. Conversely, the degree of dispersion of the lines is a visual measure of
a model’s sensitivity to an input parameter. Wagener and Kollat (2006) implemented
the original idea of Freer et al. (1996) visually using the Monte Carlo analysis toolbox15

(MCAT) (Wagener et al., 2001, 2003, 2004) where the marginal cumulative distributions
of the ten groups are plotted as the likelihood value versus the parameter values (e.g.,
see Figs. 5 and 6).

In this study, Latin hypercube sampling (LHS) was used to sample the feasible pa-
rameter space for testing RSA based on the recommendations and findings of prior20

studies (e.g. Osidele and Beck, 2001; Sieber and Uhlenbrook, 2005). LHS integrates
random sampling and stratified sampling (Mckay et al., 1979; Helton and Davis, 2003)
to make sure that all portions of the parameter space are considered. The method
divides the parameters’ ranges into n disjoint intervals with equal probability 1/n from
which one value is sampled randomly in each interval. LHS is generally recommended25

for sparse sampling of the parameter space and the parameter interactions are ne-
glected as noted by William et al. (1999). More details about LHS are available in the
following papers (Mckay et al., 1979; Helton and Davis, 2003; William et al., 1999).
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2.2.3 Analysis of variance using iterated fractional factorial design sampling

Assuming model response (e.g., RMSE of streamflow in this study) is normally dis-
tributed, the role of ANOVA is to quantify the differences of the mean model responses
that result from samples of each parameter. In ANOVA, parameters are “grouped”
into particular ranges of parameter values representing intervals with equal parame-5

ter value width, contrasting to RSA in which parameter sets are “grouped” based on
objective values. According to ANOVA terminology, a parameter is called a “factor”
and a parameter group is termed a “level” of the factor. ANOVA essentially partitions
the model output or response into the overall mean, main factor effects, factor interac-
tions, and an error term (Neter et al., 1996; Mokhtari and Frey, 2005). Theoretically,10

ANOVA can capture a range from the first order (main effects from single parameters)
to the total order of effects (i.e., all parameter impacts including all interactions). How-
ever, it is not feasible to calculate all of the effects for a complex model in practice due
to computational limitations. Fortunately, prior studies have shown that second order
interactions are usually sufficient for capturing a model’s output variance (Box et al.,15

1978; Henderson-Sellers et al., 1993; Liang and Guo, 2003). Therefore, our analysis
focuses on first order and second order effects within the ANOVA model. The ANOVA
model with main and second order effects of two factors is shown in Eq. (2):

Yi jk = µ + αi + βj + (α × β)i j + εi jk (2)

where i and j indicate the levels of factors A and B respectively, αi is the main effect of20

i th level of A, βj is the main effect of j th level of B, (α × β)i j represents the interaction
of A and B. The error term, εi jk , reflects the effects that are not explained by the main
effects and interactions of the two factors.

The F -test is used to evaluate the statistical significance of differences in the mean
responses among the levels of each parameter or parameter interaction. The F-values25

are calculated for all parameters and parameter interactions. The higher the F-values
are, the more significant the differences are and therefore the more sensitive the pa-
rameter or parameter interaction is. Detailed presentation of the ANOVA calculation
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table for main effects and second order effects can be found in other studies (Neter
et al., 1996; Mokhtari and Frey, 2005). In addition to the F-test, the coefficient of de-
termination (R2) quantifies how the ANOVA model shown in Eq. (2) captures the total
variation of model responses with the inclusion of the second order parameter interac-
tions. In cases where parameter interactions are important the coefficient of determi-5

nation should improve (or increase) with the addition of the interaction term (α × β)i j
from Eq. (2).

When applying the ANOVA method the statistical sampling scheme used to quan-
tify the model response is a key determinant of the method’s computational feasibility
and accuracy. If one parameter or parameter interaction is analyzed at a time in suc-10

cession, the total number of model runs will be excessively large and most hydrologic
applications would be computationally intractable. In this study, the iterated fractional
factorial design (IFFD) sampling scheme (Andres and Wayne, 1993; Andres, 1997;
Saltelli et al., 1995) was used to limit the computational burden posed by ANOVA while
seeking high quality results.15

IFFD works well when first and second order parameter effects dominate (Andres,
1997). Using IFFD in ANOVA allows users to neglect higher order interactions not
included in the model (Liang and Guo, 2003; Andres, 1997) while generating highly
repeatable results (Saltelli et al., 1995). Consequently, the number of model runs re-
quired can be reduced substantially. IFFD as implemented in this study samples the20

parameters at three different levels: low, middle, and high. The parameter levels are
defined as equally spaced intervals within the predefined parameter ranges. Using a
small number of factor levels enables the sampling scheme to attain statistically signif-
icant results efficiently and accurately (Mokhtari and Frey, 2005; Andres, 1997). IFFD
extends the basic orthogonal fractional factorial design (FFD) by conducting multiple25

iterations. The basic operations in IFFD include orthogonalization, folding, replication
and random sampling (Andres and Wayne, 1993; Andres, 1997; Saltelli et al., 1995).
The orthogonalized design guarantees equal frequency for two parameter combina-
tions but also differentiates the main effects from two-way interactions. A detailed pre-
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sentation of IFFD is beyond the scope of this paper. Readers interested in detailed
descriptions of IFFD are referred to the following papers (Andres and Wayne, 1993;
Andres, 1997; Saltelli et al., 1995).

2.2.4 Sobol’s method using quasi-random sequence sampling

In Sobol’s method (Sobol’, 1993), the variance of the model output is decomposed into5

components that result from individual parameters as well as parameter interactions.
Conventionally, the direct model output is replaced by a model performance measure
such as RMSE as used in this study. The sensitivity of each parameter or parameter
interaction is then assessed based on its contribution (measured as a percentage) to
the total variance computed using a distribution of model responses. Assuming the10

parameters are independent, the Sobol’s variance decomposition is shown in Eq. (3):

D(y) =
∑
i

Di +
∑
i<j

Di j +
∑
i<j<k

Di jk + D12···m (3)

where Di is the measure of the sensitivity to model output y due to the i th component
of the input parameter vector denoted as Θ, Di j is the portion of output variance that
results due to the interaction of parameter θi and θj . The variable m defines the total15

number of parameters. The variance decomposition shown in Eq. (3) can be used to
define the sensitivity indices of different orders shown below in Eq. (4)–(5).

first order Si =
Di

D
(4)

second order Si j =
Di j

D
(5)

total ST i = 1 −
D∼i
D

(6)20

where Si denotes the sensitivity that results from the main effect of parameter θi . The
second order sensitivity index, Si j , defines the sensitivity that results from the inter-
action of parameters θi and θj . The average variance, D∼i , results from all of the
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parameters except for θi . The total order sensitivity, ST i , represents the main effect
of θi as well as its interactions up to mth order of analysis. A parameter which has a
small first order index but large total sensitivity index primarily impacts the model output
through parameter interactions.

The variances in Eq. (3) can be evaluated using approximate Monte Carlo numerical5

integrations. The Monte Carlo approximations for D, Di , Di j , and D∼i are given in Eqs.
7-12 as presented in the following prior studies (Sobol’, 1993, 2001; Hall et al., 2005):

f̂0 =
1
n

n∑
s=1

f (Θs) (7)

D̂ =
1
n

n∑
s=1

f 2(Θs) − f̂0
2

(8)

D̂i =
1
n

n∑
s=1

f (Θ(a)
s )f (Θ(b)

(∼i )s,Θ
(a)
is ) − f̂0

2
(9)

10

D̂i j
c
=

1
n

n∑
s=1

f (Θ(a)
s )f (Θ(b)

(∼i ,∼j )s,Θ
(a)
(i ,j )s) − f̂0

2
(10)

D̂i j = D̂i j
c
− D̂i − D̂j (11)

D̂∼i =
1
n

n∑
s=1

f (Θ(a)
s )f (Θ(a)

(∼i )s,Θ
(b)
is ) − f̂0

2
(12)

where n is the sample size, Θs denotes the sampled individual in the scaled unit hy-
percube, and (a) and (b) are two different samples. All of the parameters take their15

values from sample (a) are represented by Θ(a)
s . The variables Θ(a)

is and Θ(b)
is denote

that parameter θi uses the sampled values in sample (a) and (b), respectively. The

symbols Θ(b)
(∼i )s and Θ(b)

(∼i )s represent cases when all of the parameters except for θi use

the sampled values in sample (a) and (b), respectively. The symbol Θ(a)
(i ,j )s represents
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parameters θi and θj with sampled values in sample (a). Finally, Θ(a)
(∼i ,∼j )s represents

the case when all of the parameters except for θi and θj utilize sampled values from
sample (b).

The original Sobol’s method required n×(2m+1) model runs to calculate all the first
order and the total order sensitivity indices. An enhancement of the method made5

by Saltelli (2002) provides the first, second and total order sensitivity indices using
n×(2m+2) model runs. In this study, we implemented this modified version of Sobol’s
methodology to compute the first order, second order and total order indices.

The convergence of the Monte Carlo integrations used in Sobol’s method is heavily
affected by the sampling scheme selected. The error term in the Monte Carlo integra-10

tion decreases as a function of 1/
√
n given uniform, random samples at n points in the

m-dimensional space. However, in this study we elected to use Sobol’s quasi-random
sequence (Sobol’, 1967, 1994) to increase the convergence rate to nearly 1/n. The
quasi-random sequence samples points more uniformly along the Cartesian grids than
uncorrelated random sampling. Details about Sobol’s quasi-random sequence can be15

found in the following studies (Sobol’, 1967, 1994; Bratley and Fox, 1988; William et al.,
1999).

3 Overview of the lumped hydrologic models

The SNOW-17 (Anderson, 1973) and the Sacramento soil moisture accounting (SAC-
SMA) models (Burnash, 1995) are popular and the United States National Weather20

Service (US NWS) uses them for river forecasting (Moreda et al., 2006; Koren et al.,
2004; Smith et al., 2004; Reed et al., 2004). In this study, lumped versions of these
models have been coupled where SAC-SMA uses SNOW-17’s outputs as forcing. Sec-
tions 3.1 and 3.2 provide brief overviews of both models.

3345

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/3/3333/2006/hessd-3-3333-2006-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/3/3333/2006/hessd-3-3333-2006-discussion.html
http://www.copernicus.org/EGU/EGU.html


HESSD
3, 3333–3395, 2006

lumped model
sensitivity analysis

Y. Tang et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

3.1 SNOW-17

SNOW-17 (Anderson, 1973) is a conceptual model that simulates the energy balance
of a snowpack using a temperature index method. Air temperature and precipitation are
the model inputs. The states and processes include snow melt, snow cover accumula-
tion, surface energy exchange during non-melt periods, snow cover heat storage, areal5

extent of snow cover, retention and transmission of liquid water, and heat exchange at
the snow-soil interface. Snow melt, snow cover accumulation, and areal extent are the
three most influential components in the model.

Snow melt is calculated separately for rain-on-snow periods and non-rain periods.
The snow melt during rain-on-snow periods is computed based on energy and mass10

balance equations with average wind function (UADJ) as the only parameter. In con-
trast, snow melt during non-rain periods is calculated empirically. The maximum melt
factor (MFMAX) and the minimum melt factor (MFMIN) control this calculation. When
calculating the accumulation of snow cover, the form of precipitation is simply deter-
mined by a threshold temperature (PXTEMP). The snowfall correction factor (SCF)15

adjusts gage precipitation estimates for biases during snowfall. To determine the areal
extent of snow cover, a pre-defined depletion curve relates the areal extent to areal wa-
ter equivalent based on the historical maximum water equivalent and the water equiv-
alent above which 100% of snow cover exists. Process calculations are described in
more detail in Anderson (1973). The main processes and corresponding twelve model20

parameters in SNOW-17 are shown in Fig. 1. Based on the prior work of Anderson
(2002), we have focused our sensitivity analysis on five of SNOW-17’s parameters (ex-
cluding the areal depletion curve). These five parameters and their allowable ranges
(Anderson, 2002) are summarized in Table 2.

3.2 Sacramento soil moisture accounting model25

The SAC-SMA model (Burnash, 1995) is a sixteen parameter lumped conceptual wa-
tershed model used for operational river forecasting by the US NWS. It represents
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the soil column by an upper and lower zone of multiple storages. The upper zone is
divided into free water and tension water storages. The tension water can move verti-
cally down to the lower zone by leakage or spill into the free water storage only when
the tension water storage (UZTWM) is filled. The free water in the upper zone can then
move laterally as interflow or move vertically down to the lower zone as percolation.5

Capacities of the two storages are model parameters (UZFWM and UZTWM), while
the volume of water in each at any time step are model states. Similar to the upper
zone, the lower zone also has tension water and free water storages. The free water
in the lower zone is further partitioned into two types: primary and supplemental free
water storages, both of which can contribute to base-flow but drain independently at10

different speeds following Darcy’s law. The maximum storages for these different types
of lower zone free water are the lower zone maximum tension water (LZTWM), the
primary free water (LZFPM), and the supplemental free water (LZFSM). SAC-SMA’s
processes and parameters are illustrated in more detail in Fig. 2. It is indicated in the
figure that there are four principal forms of runoff generated by SAC-SMA: 1) direct15

runoff on the impervious area, 2) surface runoff when the upper zone free water stor-
age is filled and the precipitation intensity is greater than percolation and interflow rate,
3) the lateral interflow from upper zone free water storage, and 4) primary baseflow.
The direct runoff is composed of the impervious runoff over the permanent impervious
area and the direct runoff on the temporal impervious area. The permanent impervi-20

ous area, represented by parameter PCTIM (percent of impervious area), represents
constant impervious areas such as pavements. The temporal impervious area, repre-
sented by parameter ADIMP (additional impervious area), includes the filling of small
reservoirs, marshes, and temporal seepage outflow areas which become impervious
when the upper zone tension water is filled. Prior work (Peck, 1976) has shown that25

thirteen out of sixteen parameters control model performance and must be calibrated.
Feasible ranges of these thirteen parameters are presented by Boyle et al. (2000) and
also used in the calibration studies of Tang et al. (2006b,a) and Vrugt et al. (2003) (see
Table 2). As shown in Table 2, the maximum allowable value of ADIMP specified by
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the author is 0.4 indicating that 40% of the watershed area is the temporal impervious
area, which can lead to large direct runoff under wet conditions.

4 Case study

4.1 Juniata watershed description

The Juniata Watershed, part of the Susquehanna River Basin, covers an area of5

8800 km2 in the ridge and valley region of the Appalachian Mountains of south cen-
tral Pennsylvania. The watershed is within the US NWS mid-Atlantic river forecast
center (MARFC) area of forecast responsibility. The primary aquifer formations are
composed of sedimentary and carbonate rocks that are presented in alternating lay-
ers of sandstone, shale, and limestone. Approximately, 67 percent of the watershed10

is forested, 23 percent is agricultural, 7 percent is developed area, and the rest is
mine lands, water, or miscellaneous. There are 11 major sub-watersheds (see Fig. 3),
among which, RTBP1, LWSP1, MPLP1, and NPTP1 have heavily controlled flows from
reservoirs. Our preliminary analysis of the watershed focused on 7 headwater sub-
watersheds where flows are not managed. Figure 5 illustrates our preliminary analysis15

of the hydrologic conditions within the seven sub-watersheds by plotting their flow du-
ration curves as well as monthly averages for streamflow, potential evaporation, and
precipitation. Figure 4 shows that the SPKP1 (Spruce Creek) and SXTP1 (Saxton) wa-
tersheds have distinctly different flow regimes. In the remainder of our study, we have
evaluated the model sensitivities within these two watersheds using the four sensitivity20

analysis tools introduced in Sect. 2. As will be discussed in more detail in Sect. 5,
our analysis evaluates model sensitivities for different temporal and spatial scales (i.e.,
SPKP1 and SXTP1 have drainage areas of 570 and 1960 km2, respectively).
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4.2 Data set

The SAC-SMA/SNOW-17 lumped model used required input forcing data consisting of
precipitation, potential evapotranspiration (PE), and air temperature. The precipitation
data are next generation radar (NEXRAD) multisensor precipitation estimator data from
the US NWS. Hourly data for precipitation and air temperature were available from 15

January 2001 to 31 December 2003. The observed streamflow in the same period was
obtained from United States Geological Survey (USGS) gauge stations located at the
outlets of the SPKP1 and SXTP1 watersheds.

5 Computational Experiment

5.1 Model setup and parameterizations10

In this study, we used a Linux computing cluster with 133 computer nodes composed of
dual or quad AMD Opteron processors and 64 GB of RAM. Two month warmup periods
(1 January to 28 Feburary 2001) were used to reduce the influence of initial conditions.
Model performance was evaluated using three different time intervals (1 h, 6 h, 24 h) to
test how parameter sensitivities change due to different prediction time scales. The a15

priori parameter settings used for the SNOW-17 and SAC-SMA models where based
on the recommendations of the Mid-Atlantic River Forecasting Center of the US NWS.

The primary algorithmic parameters for PEST were set based on the recommenda-
tions of Doherty (2004). The initial Marquardt lambda and its adjust factor were set
to be 5 and 2 respectively. When calculating the derivatives, the parameters were20

incremented by a fraction of the current parameters’ values subject to the absolute in-
crement lower bounds. The fraction is 0.01 and the lower bounds vary from parameter
to parameter based on their magnitudes. The parameter estimation process terminates
if one of the following conditions is satisfied: 1) the number of iterations exceeds 30;
2) the relative difference between the objective value of the current iteration and the25
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minimum objective value achieved to date is less than 0.01 for 3 successive iterations;
3) the algorithm fails to lower the objective value over 3 successive iterations; 4) the
magnitude of the maximum relative parameter change between optimization iterations
is less than 0.01 over 3 successive iterations.

Statistical sample sizes are key parameters for RSA, ANOVA, and Sobol’s method.5

In this study, the sample sizes were configured based on both literature recommenda-
tions and experiments by observing the convergence and reproducibility of the sensi-
tivity analysis results. Sieber and Uhlenbrook (2005) used a sample size of 10 times
the number of perturbed parameters while doing sensitivity analysis on a distributed
catchment model using LHS. However, the experimental analysis showed this is far10

from enough for our study. Examining statistical convergence as a function of increas-
ing sample size, we determined a size of 10 000 was sufficient for LHS in RSA. For
the ANOVA method, typically the F-values increase for the sensitive parameters with
increases in sample size (Mokhtari and Frey, 2005). Our analysis of convergence for
the ANOVA method’s F-values and parameter sensitivity rankings showed that a sam-15

ple size of 10 000 was sufficient when using IFFD sampling. For Sobol’s quasi-random
sequence Sobol’ (1967) states that additional uniformity can be obtained if the sample
size is increased according to the function n=2k , where k is an integer. Building on this
recommendation, our analysis showed that Sobol’s sensitivity indices converged and
were reproducible using a sample size 8192 (213).20

5.2 Objective functions

Two different model performance objective functions were used to screen the sensitivity
of SAC-SMA and SNOW17 for high streamflow and low streamflow. The first objective
was the non-transformed root mean square error (RMSE) objective, which is largely
dominated by peak flow prediction errors due to the use of squared residuals. The25

second objective was formulated using a Box-Cox transformation of the hydrograph
(z=[(y+1)λ−1]/λ where λ=0.3) as recommended by Misirli et al. (2003) to reduce the
impacts of heteroscedasticity in the RMSE calculations (also increasing the influence
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of low flow periods).

5.3 Bootstrap confidence intervals

For ANOVA and Sobol’s method, the F-values and sensitivity indices can have a high
degree of uncertainty due to random number generation effects (Archer et al., 1997;
Fieberg and Jenkins, 2005). In this study, we used the bootstrap method (Efron and5

Tibshirani, 1993) to provide confidence intervals for the parameter sensitivity rankings
for both ANOVA and Sobol’s method. Essentially, the samples generated by IFFD or
Sobol’s sequence were resampled N times when calculating the F-values or sensitivity
indices for each parameter, resulting in a distribution of the F-values or indices. The
moment method (Archer et al., 1997) was adopted for acquiring the bootstrap confi-10

dence intervals (BCIs) for this paper. The moment method is based on large sample
theory and requires a sufficiently large resampling dimension to yield symmetric 95%
confidence intervals. In this study, the resample dimension N was set to 2000 based
on prior literature discussions as well as computational experiments that confirmed a
symmetric distribution for standard errors. Readers interested in detailed descriptions15

of the bootstrapping method used in this paper can reference the following sources
(Archer et al., 1997; Efron and Tibshirani, 1993).

5.4 Evaluation of sensitivity analysis results

As argued by Andres (1997), good sensitivity analysis tools should generate repeatable
results using a different sample set to evaluate model sensitivities. The effectiveness20

of a sensitivity analysis method refers to its ability to correctly identify the influential
parameters controlling a model’s performance. Building on Andres (1997), we have
tested the effectiveness of each of the sensitivity methods using an independent LHS-
based random draw of 1000 parameter groups for the 18 parameters analyzed in this
study.25

The independent sample and the sensitivity classifications from each of the sensitiv-
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ity analysis methods were combined to develop three parameter sets. Set 1 consists of
the full randomly generated independent sample set of 1000 parameter groups. In Set
2, the parameters classified as highly sensitive or sensitive are set to a priori values
while the remaining insensitive parameters are allowed to vary randomly. Lastly, in Set
3 the parameters classified as being highly sensitive or sensitive vary randomly and5

the insensitive parameters are set to a priori values.
Varying parameters that are correctly classified as insensitive in Set 2 should the-

oretically yield a zero correlation with the full random sample of Set 1 (i.e., plot as a
horizontal line). If some parameters are incorrectly classified as insensitive then the
scatter plots show deviations from a horizontal line and increased correlation coeffi-10

cients (e.g., see Fig. 10a). Conversely, if the correct subset of sensitive parameters is
sampled randomly (i.e., Set 3) than they should be sufficient to capture model output
from the random samples of the full parameter set in Set 1 yielding a linear trend with
an ideal correlation coefficient of 1. We extended the evaluation methodology of An-
dres (1997) by calculating the corresponding correlation coefficients instead of using15

scatter plots.

6 Results

Sections 6.1–6.4 present the results attained for each of the four sensitivity analysis
methods tested in this study. Results are presented for the SPKP1 and SXTP1 water-
sheds at 1 h, 6 h, and 24 h timescales. Section 6.5 then provides a detailed analysis20

of how the results from each sensitivity method compare in terms of their selection
of highly sensitive, sensitive, and insensitive parameters for the SAC-SMA/SNOW-17
lumped model. Additionally, Sect. 6.5 builds on the work of Andres (1997) to evaluate
the relative effectiveness of the methods in identifying the key input parameters control-
ling model performance. Detailed conclusions on how individual watershed properties25

impact model performance are beyond the scope of this paper.
Before discussing the sensitivity results in detail, it is worth noting that there are sev-
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eral ways that sensitivity analysis methods can be evaluated and used in the context
of watershed model identification and evaluation. The current study builds on the opti-
mization research of Tang et al. (2006b) by focusing on how well PEST, RSA, ANOVA,
and Sobol’s method can identify the set of model input parameters that control model
performance. Successful screening of the relative importance of input parameters and5

their interactions can help to limit the dimensionality of calibration search problems and
serve to enhance the efficiency of uncertainty analysis. Recall from Sect. 5 that the
model performance objectives used in this study evaluate the influence of high stream-
flow conditions via the RMSE measure and low streamflow conditions via the Box-Cox
transformed RMSE (TRMSE). Small values of these measures implies that the SAC-10

SMA/SNOW-17 streamflow projections closely match observations in the simulated
period.

6.1 Sensitivity results for PEST

In the case of PEST, sensitivities are computed using the Jacobean derivative-based
composite measures defined in Eq. (1). The method is termed local because the com-15

posite derivatives are evaluated at a single point in the parameter space deemed locally
optimal by the Gauss-Marquardt-Levenberg algorithm. Tables 3 and 4 provide the sen-
sitivities computed by PEST for the RMSE and TRMSE objectives, respectively. In the
tables, highly sensitive parameters are designated with dark grey shading, sensitive
parameters have light grey shading, and insensitive parameters are not shaded. The20

SNOW-17 and SAC-SMA parameters are listed separately as are the 1 h, 6 h, and 24 h
results for each watershed.

As a caveat, the thresholds used to differentiate highly sensitive, sensitive, and in-
sensitive parameters are based only on the relative magnitudes of the derivatives given
in each column, making them subjective and somewhat arbitrary. The thresholds were25

determined by ranking each column in ascending order and then plotting the relative
magnitudes of the derivatives. Results were classified as either highly sensitive or
sensitive where the derivative values changed the most significantly. Insensitive pa-
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rameters had small derivative values that could not be distinguished. Note different
thresholds were used for Tables 3 and 4 since the Box-Cox transformation reduced the
original range of RMSE by approximately an order of magnitude. The results in Tables 3
and 4 show that PEST did not detect significant changes in parameter sensitivities for
high flow (RMSE) versus low flow (TRMSE) conditions. Also differences in the time-5

scales of predictions as well as watershed locations did not significantly change the
PEST sensitivity designations in both tables. Overall PEST found the parameters for
impervious cover (PCTIM, ADIMP) and those for storage depletion rates (UZK, LZPK,
LZSK) significantly impacted model performance, especially for daily time-scale predic-
tions. The mean water-equivalent threshold for snow cover (SI) and lower zone storage10

parameters (LZTWM, LZFSM, and LZFPM) were classified by PEST as being the least
sensitive.

6.2 RSA Results

As described in Sect. 2.2.2, a visual extension of RSA (Young, 1978; Hornberger and
Spear, 1981; Freer et al., 1996; Wagener and Kollat, 2006) was used to evaluate pa-15

rameter sensitivities for the SAC-SMA/SNOW-17 lumped model. Results were com-
puted for the same timescales and watersheds as were presented for PEST. Given
the large number of results analyzed, Figs. 5 and 6 provide sample plots for our RSA
analysis, whereas the full sensitivity classifications are summarized in Tables 5 and 6.
In Figs. 5 and 6 each model parameter has its own plot with its range on the horizontal20

axis and its cumulative normalized RMSE distribution value on the vertical axis. In the
plots, color shading is used to differentiate the likelihoods of each one of the ten bins
used to divide the input parameter samples. High likelihood bins plotted in purple rep-
resent portions of the parameters’ ranges where low RMSE values are expected. In
the context of sensitivity analysis, RSA measures the distribution of model responses25

that result from the 10 000 Latin hypercube input parameter groups sampled. When
parameters are insensitive (see the SNOW-17 results shown in Fig. 5) each of the 10
sample bins plot over each other in linear trend lines that are representative of uni-
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formly distributed RMSE values. Sensitive parameters produced highly dispersed bin
lines such as those shown for ADIMP shown in Fig. 6.

The SAC-SMA/SNOW-17 sensitivity classifications resulting from RSA are presented
in Tables 5 and 6. The classifications represent our qualitative interpretation of visual
plots similar to those in Figs. 5 and 6 for each timescale and each watershed. As is5

standard in hydrologic applications of RSA (e.g., Freer et al., 1996; Wagener and Kol-
lat, 2006), only individual parameter impacts on model performance are considered
and parameter interactions have been neglected. Analysis of Tables 5 and 6 show
significant changes in sensitivity when comparing across timescales, watersheds, and
model performance objectives. Examples of these changes include the increased im-10

portance of the SNOW-17 parameters for gage precipitation adjustment factor (SCF)
and minimum melt factor in non-rain periods (MFMIN) at the daily timescale. High flow
and low flow conditions in both watersheds impacted RSA classification’s of highly sen-
sitive parameters. The RMSE measure (i.e., high flow) identified additional impervious
area (ADIMP) as the most sensitive parameter in tested cases. Shifting the focus to15

low flow using the TRMSE measure resulted in the vadose zone storage (LZTWM) as
being classified as the most sensitive parameter.

6.3 Sensitivity results for ANOVA

Recall that ANOVA is a parametric analysis of variance that uses the assumption of
normally distributed model responses (RMSE and TRMSE for streamflow in this study)20

to partition variance contributions between single parameters and parameter interac-
tions. In this study, a second order ANOVA model (i.e., a model that considers pair wise
parameter interactions) was fit to the model outputs and the F-test is used to evaluate
the statistical significance of each parameter’s or parameter interaction’s impact on the
model output. Higher F-values indicate higher significance or sensitivity. Additionally,25

the coefficient of determination R2 can be used to measure if incorporating parameter
interactions into the ANOVA model improves its ability to represent model output vari-
ability (Mokhtari and Frey, 2005). Because random sampling can introduce significant
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uncertainty into the calculation of F-values, we have followed the recommendations of
Archer et al. (1997) and used statistical bootstrapping to provide 95% confidence in-
tervals for our ANOVA sensitivity rankings. Tables 7 and 8 provide F-values for each
parameter as well as its bootstrapped confidence interval. Tabular presentation of the
ANOVA results improved their clarity since the F-values ranged over 4 orders of mag-5

nitude [0.02–7000] making plots difficult to interpret.
Tables 7 and 8 are formatted similarly to the prior sensitivity tables where highly sen-

sitive parameters have dark grey shading, sensitive parameters have light grey shad-
ing, and insensitive parameters have no shading. These classifications were based on
the F-distribution where a threshold of 4.6 represents less than a 1-percent chance of10

misclassifying a parameter as sensitive. As can be seen in the tables, some param-
eters’ F-values were up to three orders of magnitude larger than 4.6. A threshold of
460 was used to classify parameters as being highly sensitive. Although the threshold
used to classify highly sensitive parameters is subjective, it accurately captures those
parameters with very large F-values.15

Analysis of Table 7 shows that for the high-flow RMSE objective, the most significant
differences in sensitivities across timescales and across watersheds involved SNOW-
17 parameters. The results show increasing sensitivities for the snow accumulation
gage precipitation adjustment factor (SCF) and the minimum melt factor for non-rain
periods (MFMIN) at the daily timescale. Overall, Table 7 shows that most of SAC-SMA20

parameters are sensitive for high flow conditions regardless of timescale or watershed.
The high flow RMSE analysis identified additional impervious area (ADIMP) as having
the highest influence on model variance while percolation of free water (PFREE) is
rated to have the least impact.

In Table 8 the ANOVA results using the low flow TRMSE objective are substantially25

different from those for high flow in Table 7. There is a pronounced difference between
ANOVA predicted sensitivities for the two watersheds for the low-flow measure. For the
SPKP1 watershed most of the SAC-SMA parameters remain sensitive across all tested
timescales, whereas parameters describing upper zone storage and flows (UZFWM,

3356

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/3/3333/2006/hessd-3-3333-2006-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/3/3333/2006/hessd-3-3333-2006-discussion.html
http://www.copernicus.org/EGU/EGU.html


HESSD
3, 3333–3395, 2006

lumped model
sensitivity analysis

Y. Tang et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

UZK, PCTIM) are classified as insensitive for SXTP1. As would be expected for low
flows, Table 8 shows a general reduction relative to Table 7 in the influence of upper
zone parameters and an increase in the importance lower zone parameters.

Beyond single parameter sensitivities, the coefficients of determination in Table 9
show that 2nd order interactions (or pair wise parameter interactions) improve the ac-5

curacy of the ANOVA model, which means the model better represents the total vari-
ance of the SAC-SMA/SNOW-17 model output. The coefficients of determination show
that 2nd order parameter interactions improve the ANOVA models’ performances by
up to 50%. Figure 7 illustrates the 2nd order parameter interactions impacting the
SAC-SMA/SNOW-17 model. Second order analysis changes the degrees of freedom10

used when analyzing the F-distribution making it necessary to define a new threshold
in Fig. 7. An F-value threshold of 3.32 designates at least a 99% likelihood of being
sensitive. Again higher F-values imply higher sensitivity.

Figure 7 provides a more detailed portrayal of how parameter sensitivities change
across timescales for each of the watershed models. The RMSE-based ANOVA inter-15

actions in Fig. 7a for the SPKP1 watershed show that lower zone parameter interac-
tions are increasingly more important for longer timescale, whereas the opposite trend
is present for the SXTP1 watershed. These plots imply each watershed model has a
“unique” set of parameter interactions impacting its performance (Beven, 2000).

The uniqueness of each watershed model is further supported by the TRMSE results20

shown in Fig. 7b. As expected lower zone parameter interactions are important for
predicting low-flows for both watersheds. Interestingly, all of the low-flow predictions
for the SPKP1 watershed are heavily impacted by parameter interactions, more so than
any of the other cases analyzed using the ANOVA method.

6.4 Sensitivity results for Sobol’s method25

Recall from Sect. 2.2.4, that Sobol’s method decomposes the overall variance of the
sampled SAC-SMA/SNOW-17 model output to compute 1st order (single parameter),
2nd order (two parameter), and total order sensitivity indices. These indices are pre-
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sented as percentages and have straightforward interpretations as representing the
percent of total model output variance contributed by a given parameter or parameter
interaction. The total order indices are the most comprehensive measures of a single
parameter’s sensitivity since they represent the summation of all variance contributions
involving that parameter (i.e., its 1st order contribution plus all of its pair wise interac-5

tions).
Table 10 shows the relative importance of 1st and 2nd order effects for all of the

cases analyzed. Readers should note that the truncation and Monte Carlo approxi-
mations of the integrals required in Sobol’s method can lead to small numerical errors
(e.g., see Archer et al., 1997; Sobol’, 2001; Fieberg and Jenkins, 2005) such as slightly10

negative indices or for example in Table 10 the few cases where 1st and 2nd order ef-
fects sum to be slightly larger than 1. In this study these effects were very small and
did not impact parameter rankings. Table 10 supports our analysis assumption that
1st and 2nd order parameter sensitivities explain nearly all of the variance in the SAC-
SMA/SNOW-17 model’s output distributions. The table also shows that the importance15

of 2-parameter interactions ranged from 9% to 40% of the total variance depending on
the model performance objective, the prediction timescale, and the watershed.

Tables 11 and 12 summarize the total order indices (i.e., total variance contributions)
for the SAC-SMA/SNOW-17 parameters analyzed. Again highly sensitive parameters
are designated with dark grey shading, sensitive parameters have light grey shading,20

and insensitive parameters are not shaded. In all of the results presented for Sobol’s
method, parameters classified as highly sensitive had to contribute on average at least
10-percent of the overall model variance and sensitive parameters had to contribute
at least 1-percent. These thresholds are subjective and their ease-of-satisfaction de-
creases with increasing numbers of parameters or parameter interactions. In Tables 1125

and 12 the total order indices again show that the model performance objective, the
prediction timescale, and the watershed all heavily impact the SAC-SMA/SNOW-17
sensitivities.

In both tables, the SNOW-17 parameters contributed minimally to the overall vari-
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ance of the simulation model’s output. Only the minimum melt factor for non-rain pe-
riods (MFMIN) parameter has a statistically reliable sensitivity when the bootstrapped
confidence intervals are considered. Tables 11 and 12 also insinuate that most of the
SAC-SMA model parameters are sensitive. For the high-flow RMSE results, the up-
per zone free water storage (UZFWM) and the additional impervious area (ADIMP)5

were the most sensitive SAC-SMA parameters. The lower zone storage parameters
dominate model response for the low-flow TRMSE measure. In particular, the tension
water storage (LZTWM) appears to be the dominant overall parameter, especially for
the SXTP1 watershed’s results where it explains 60% of the output’s variance.

Figure 8 provides a more detailed understanding of the total order indices presented10

in Tables 11 and 12. Similar to the ANOVA interaction plots in Sect. 6.3, these figures
show the matrix of parameter interactions where circles designate pairings that con-
tribute at least 1% of the overall model output variance. The actual 2nd order indices’
values are shown with the color shading defined in the plots’ legends. These plots
show how the dominant parameters for both the RMSE and TRMSE results tend to15

have the greatest number of interactions (e.g., ADIMP and UZFWM in Fig. 8). Inter-
estingly, there are very distinct differences for the parameter interactions for the two
watersheds. Recall from Table 10 that the SXTP1 hourly RMSE results had the largest
contribution from 2nd order effects (44% of the total variance). Both Table 11 and the
interactions shown in Fig. 8a confirm the increased importance of interactions, partic-20

ularly interactions with lower zone parameters. When comparing the RMSE results in
Fig. 8a with TRMSE results in Fig. 8b the shift from high-flow to low flow analysis tends
to increase the importance interactions with lower zone parameters for the SPKP1 wa-
tershed, whereas the opposite is true for the SXTP1 watershed. Readers should note
that our 1% threshold for Sobol’s method is particularly conservative when analyzing25

Figs. 8a and b since the number of variables analyzed increases from 18 for 1st order
analysis to 162 parameter interactions in 2nd order analysis.
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6.5 Comparative summary of sensitivity methods

Sections 6.1–6.4 present classifications of SAC-SMA/SNOW-17 model parameters into
three categories: (1) highly sensitive, (2) sensitive, and (3) insensitive. Given the large
number of cases analyzed in this study, Fig. 9 was developed to provide a compara-
tive summary of the results attained from the four sensitivity analysis methods. These5

figures show that there are distinct similarities and differences between the sensitiv-
ity classifications attained using each method. For example, despite the subjective
decisions required to differentiate highly sensitive and sensitive parameters, generally
RSA, ANOVA, and Sobol’s method agree on their classifications of the most sensitive
parameters for each scenario.10

All four sensitivity methods show that the SAC-SMA/SNOW-17 model’s responses
are “uniquely” determined by the performance objective specified, prediction timescale,
and specific watershed being modeled (Beven, 2000). Differences between the four
sensitivity methods’ classifications as illustrated in Fig. 9 are particularly pronounced
for parameters at the threshold between sensitive and insensitive. One of the biggest15

discrepancies shown in the plots is that PEST generally found the SNOW-17 parame-
ters to be sensitive for hourly and 6-hourly predictions. None of the global sensitivity
methods showed a similar result, making it likely that the PEST results are reflective
of local optima in the model’s response surface, which would be expected to be highly
multimodal (Duan et al., 1992; Tang et al., 2006b).20

Figure 9 shows that RSA generally defined the smallest subset of SAC-SMA/SNOW-
17 parameters as being sensitive or highly sensitive. The RSA version used in this
study is unique among the four tested sensitivity methods in the sense that our clas-
sifications required qualitative assessments of a visual representation of results. As
noted above RSA yields very similar rankings for highly sensitive results, but the quali-25

tative interpretation of sensitivity becomes more challenging for parameters that show
modest sensitivity.

Although Fig. 9 provides a comparative synopsis of the different results attained by
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the four sensitivity methods, it does not allow for any quantitative analysis of their rel-
ative effectiveness as screening tools. Building on Andres (1997), we have tested the
effectiveness of each of the sensitivity methods used in this study. We have used the
sensitivity classifications given in Fig. 9 in combination with an independent LHS-based
random draw of 1000 parameter groups for the 18 parameters analyzed in this study.5

Recall from Sect. 5.4, that the independent sample and the sensitivity classifications
in Fig. 9 were used to develop three parameter sets. Set 1 consists of the full ran-
domly generated independent sample set. In Set 2, the parameters classified as highly
sensitive or sensitive are set to a priori fixed values while the remaining insensitive
parameters are allowed to vary randomly. Lastly, in Set 3 the parameters classified as10

being highly sensitive or sensitive vary randomly and the insensitive parameters are
set to a priori values.

Figure 10 illustrates that by plotting Set 2 versus Set 1 as well as Set 3 versus Set
1 we can test the effectiveness of the sensitivity analysis methods. As shown for the
Sobol method’s results in Fig. 10a varying parameters that are correctly classified as15

”insensitive” in Set 2 should theoretically yield a zero correlation with the full random
sample of Set 1 (i.e., plot as a horizontal line). If some parameters are incorrectly
classified as insensitive then the scatter plots show deviations from a horizontal line
and increased correlation coefficients as is the case for the PEST, RSA, and ANOVA
results in Fig. 10a. Conversely, if the correct subset of sensitive parameters is sampled20

randomly (i.e., Set 3) than they should be sufficient to capture model output from the
random samples of the full parameter set in Set 1 yielding a linear trend with an ideal
correlation coefficient of 1. Figure 10b shows that the Sobol’s method yields the highest
correlation between Set 3 and Set 1 followed closely by ANOVA. Interestingly, PEST
and RSA yield similar correlations for the SPKP1 watershed’s results shown in Fig. 10.25

More generally, the plots in Fig. 10 show that this analysis can be quantified using
correlation coefficients.

Table 13 provides a summary of correlation coefficients for all of the test cases an-
alyzed in this study. Although PEST shows the worst performance overall, it is in-
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teresting to note that in several cases PEST performed comparably to RSA, espe-
cially for the RMSE-based evaluations. The correlation coefficients in Table 13 show
that Sobol’s method and ANOVA perform very similarly in terms of their effectiveness.
Sobol’s method has a slight advantage in that some of its sensitivity classifications
yielded smaller sets of “sensitive” parameters that still yielded superior correlations5

(i.e., it served as a more accurate screening tool). Sobol’s method and ANOVA have
consistently superior correlations compared to both PEST and RSA, which should be
expected given the importance of parameter interactions in the problems analyzed.

7 Discussion

The results of this study show that model parameter sensitivities are heavily impacted10

by the choice of analysis method as well as the selected model time interval. Differ-
ences between the two adjacent watersheds also suggest strong influences of local
physical characteristics on the sensitivity methods’ results. As the only local sensitivity
approach analyzed, it is not surprising that PEST yielded results that were often signifi-
cantly different from the global sensitivity methods. As noted in Sect. 6.5, the most con-15

tradictory PEST result in this study was its classification of the SNOW-17 parameters
as being sensitive for hourly or 6-hourly predictions. This apparent misclassification
of the snow parameters reflects the biggest and to a degree most expected limitation
for PEST. Readers should be aware that the linearization of the relationship between
model’s output and its parameters will adversely impact PEST applications for hydro-20

logic models with thresholds because of their impacts on the derivatives in the Taylor’s
series expansion. As a local sensitivity approach, PEST is more prone to misclassify
sensitivities for highly multimodal response surfaces since the method’s derivatives are
computed at a single point determined to be locally optimal by the Gauss-Marquardt-
Levenberg algorithm (Abbaspour et al., 2001; Doherty and Johnston, 2003). The model25

response surface is defined as the mapping of all sampled parameter inputs for a model
into the set of RMSE (or TRMSE) values that define the accuracy of its performance.
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Hydrologic models have been shown to yield complex surfaces with a large number of
local optima (Duan et al., 1992; Vrugt et al., 2003; Tang et al., 2006b). As the search
space dimension and complexity increases, PEST’s composite Jacobean-based mea-
sure has an increasing likelihood of identifying sensitivities that represent local anoma-
lies in the model’s response. Despite this limitation, the PEST results shown in this5

paper show that the method was often competitive with RSA (see Table 13), but was
inferior to both ANOVA and Sobol’s method. PEST’s strengths lie in its computational
efficiency, ease-of-implementation, and ease-of-use, especially for more complex envi-
ronmental models [for an application of inversion of a groundwater flow-and-transport
model see (Tonkin and Doherty, 2005)].10

Overall the results in Table 13 indicate that RSA is slightly more effective than PEST,
but less effective than ANOVA and Sobol’s method. While RSA often identifies the
same highly sensitive parameters as ANOVA and Sobol’s method, less sensitive pa-
rameters were often neglected. This reflects a methodological limitation of the RSA
version we used where the qualitative interpretation of sensitivity becomes more chal-15

lenging for parameters that show modest impacts on model performance. The quali-
tative nature of the RSA version we used prevents quantitative rankings of parameter
sensitivities. Moreover, the qualitative interpretations ignore parameter interactions
which further biases RSA to yield smaller “sensitive” parameter sets. The dimension-
ality of the parameter space being sampled in this study also seems to have a large20

impact on the RSA sensitivity classifications. As has been shown in numerous prior
studies (Duan et al., 1992; Vrugt et al., 2003; Tang et al., 2006b,a), it is extremely
challenging to identify regions of the SAC-SMA model’s response surface that are near
optimal or optimal. Although the Latin hypercube sampling used in RSA showed sta-
tistical convergence at 10 000 samples, the plots used to classify parameters as being25

sensitive (e.g., see Figs. 5 and 6) are guaranteed to under represent the true disper-
sion within their likelihood distributions due to the high-dimension of the sample space
(i.e., 18 parameters). The strengths of RSA that have motivated its popularity in the
hydrologic literature are its ease-of-implementation, its highly visual results, and its
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complementary support of uncertainty analysis.
ANOVA and Sobol’s method have a clear methodological distinction relative to PEST

and RSA in that they readily account for 2nd order parameter interactions. Clearly, pa-
rameter interactions contribute to ANOVA and Sobol’s method classifying more param-
eters as being sensitive relative to RSA. The largest difference between the results of5

ANOVA and Sobol’s method is the impact of random number generation and sampling
uncertainties as quantified in our bootstrapping analysis.

The F-values attained for ANOVA varied significantly in their computed confidence
intervals, making the method’s ranking of moderately sensitive parameters highly un-
certain. We found that Sobol’s parameter sensitivity rankings still showed variability, but10

that the overall rank order did not change as significantly as the ANOVA rankings. As
noted by Mokhtari and Frey (2005) and verified in this study, ANOVA is fairly robust for
highly nonlinear models with thresholds, despite its normality assumptions. ANOVA’s
use of the F-distribution in assigning sensitivities has positive and negative impacts on
analysis. The F-values attained in ANOVA are easily ranked and sensitivity thresholds15

can be easily defined by users based on the likelihood of misclassification. Unfortu-
nately, the F-values vary significantly with bootstrapping and sample size, impacting
their rank ordering and meaningfulness as sensitivity metrics.

Alternatively, Sobol’s indices have very direct and meaningful interpretations in terms
of the overall contribution to model output variance. Relative to the other methods20

tested, Sobol’s indices provided the most detailed description of how individual param-
eters and their interactions impact model performance. Although Sobol’s method is
the most complex and computationally expensive [requiring 8192×(2×18+2)=311 296
model runs] sensitivity analysis technique tested, its robustness, ease-of-interpretation,
and detailed results distinguish it among the methods tested in this study. Read-25

ers should note that the relatively small computational burden posed by the SAC-
SMA/SNOW 17 model allowed us to be very conservative in our choice of sample
size for Sobol’s method. Generally, the relative ranking of parameter sensitivities was
stable for a much smaller sample size, our use of 8192 samples may be overly rigorous
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and reflects our minimization of minor numerical errors that did not appreciably change
sensitivity classifications.

8 Conclusions

This study tested four sensitivity analysis methods: (1) local analysis using parameter
estimation software (PEST), (2) regional sensitivity analysis (RSA), (3) analysis of vari-5

ance (ANOVA), and (4) Sobol’s method. These four sensitivity methods were applied
to the lumped Sacramento soil moisture accounting model (SAC-SMA) coupled with
SNOW-17. Results from this study characterize model sensitivities for the two medium
sized watersheds within the Juniata River Basin in Pennsylvania, USA. Comparative
results for the 4 sensitivity methods are presented for a 3-year time series with 1 hour,10

6 hour, and 24 hour time intervals.
In this study, we classified the SAC-SMA/SNOW-17 model parameters into three

categories: (1) highly sensitive, (2) sensitive, and (3) insensitive. The sensitivity re-
sults presented in Sect. 6 show that the SAC-SMA/SNOW-17 model’s responses are
“uniquely” determined by the performance objective specified, prediction timescale,15

and specific watershed being modeled. Generally, the global methods (RSA, ANOVA,
and Sobol’s method) agreed on their classifications of the most sensitive parameters
for each case. The local method, PEST, generated results that were often significantly
different from the global sensitivity analysis methods.

PEST and RSA both neglect parameter interactions and as a consequence yield20

a far less nuanced description of the models they evaluate. In a broader context,
sensitivity analysis shapes the manner in which hydrologists view the processes and
watershed properties impacting their model results. The basic assumptions, used in
PEST and RSA, such as neglecting parameter interactions, may manifest themselves
in the subsequent myriad of potential uses of the hydrologic model (e.g., flood forecast-25

ing, observation network design, reservoir management, etc.) by providing an overly
simplified view of the controls on a hydrologic system.
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Overall ANOVA and Sobol’s method were shown to be superior to RSA and PEST.
Relative to one another, ANOVA has reduced computational requirements and Sobol’s
method yielded more robust sensitivity rankings. The results from ANOVA and Sobol’s
method clearly show that second order parameter interactions explained between 10
to 40% of the SAC-SMA/SNOW-17 model’s variance. The implication of this result5

is that a larger number of parameters and processes within the model are impacting
its performance. This study shows that as prediction problems in hydrology grow in
complexity, our analysis techniques need to evolve to better represent and understand
how models behave.
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Table 1. Summary of sensitivity analysis tools in the study.

Tools Local/Global Interactions Sampling Quantify/Visualize

PEST Local No Local Perturbation Composite Sensitivity
RSA Global No LHS CDF Plots
ANOVA Global Yes IFFD F-Values
Sobol’s Global Yes Quasirandom Sequence Sensitivity Indices

3373

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/3/3333/2006/hessd-3-3333-2006-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/3/3333/2006/hessd-3-3333-2006-discussion.html
http://www.copernicus.org/EGU/EGU.html


HESSD
3, 3333–3395, 2006

lumped model
sensitivity analysis

Y. Tang et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

Table 2. Summary of SNOW-17 and SAC-SMA parameters.

Model Parameters Unit Description Allowable Range

SCF Gage catch deficiency adjustment factor 1.0–1.3
MFMAX mm/degc/6 h Maximum melt factor during non-rain periods 0.5–1.2

SNOW-17 MFMIN mm/degc/6 h Maximum melt factor during non-rain periods 0.1–0.6
UADJ mm/mb Average wind function during rain-on-snow periods 0.02–0.2
SI mm Mean water-equivalent above which 100% cover ex-

ists
10–120

UZTWM mm Upper zone tension water maximum storage 1.0–150.0
UZFWM mm Upper zone free water maximum storage 1.0–150.0
UZK day−1 Upper zone free water lateral depletion rate 0.1–0.5
PCTIM Impervious fraction of the watershed area 0.0–0.1
ADIMP Additional impervious area 0.0–0.4
ZPERC Maximum percolation rate 1.0–250.0

SAC-SMA REXP Exponent of the percolation equation 0.0–5.0
LZTWM mm Lower zone tension water maximum storage 1.0–500.0
LZFSM mm Lower zone free water supplemental maximum stor-

age
1.0–1000.0

LZFPM mm Lower zone free water primary maximum storage 1.0–1000.0
LZSK day−1 Lower zone supplemental free water depletion rate 0.01–0.25
LZPK day−1 Lower zone primary free water depletion rate 0.0001–0.025
PFREE Fraction of water percolating from upper zone di-

rectly to lower zone free water storage
0.0–0.1
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Table 3. PEST sensitivities based on the RMSE measure. Dark gray shading designates highly
sensitive parameters defined using a threshold value of 1.0. Light gray designates sensitive pa-
rameters defined using a threshold value of 0.01. White cells in the table designate insensitive
parameters.
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Table 3. PEST sensitivities based on the RMSE measure. Dark
gray shading designates highly sensitive parameters defined using a
threshold value of 1.0. Light gray designates sensitive parameters
defined using a threshold value of 0.01. White cells in the table
designate insensitive parameters.

Model Parameter
SPKP1 SXTP1

1h 6h 24h 1h 6h 24h
SCF 0.03 0.16 0.69 0.11 0.31 0.59
MFMAX 0.00 0.04 0.04 0.01 0.02 0.03

SNOW-17 MFMIN 0.02 0.05 2.05 0.02 0.26 0.73
UADJ 0.02 0.03 0.53 0.01 0.12 0.47
SI 0.00 0.00 0.00 0.00 0.00 0.00

UZTWM 0.00 0.00 0.00 0.00 0.00 0.00
UZFWM 0.00 0.00 0.01 0.00 0.01 0.01
UZK 0.08 0.01 0.47 0.77 1.92 3.54
PCTIM 0.28 0.56 0.94 0.60 1.44 2.64
ADIMP 0.27 0.54 0.91 0.57 1.38 2.55
ZPERC 0.00 0.00 0.00 0.02 0.05 0.10

SAC-SMA REXP 0.05 0.05 0.08 0.01 0.04 0.08
LZTWM 0.00 0.00 0.00 0.00 0.00 0.00
LZFSM 0.00 0.00 0.00 0.00 0.00 0.00
LZFPM 0.00 0.00 0.00 0.00 0.00 0.00
LZSK 0.85 0.82 1.30 2.45 9.20 14.45
LZPK 5.09 5.51 14.81 10.77 81.71 47.65
PFREE 0.00 0.01 0.02 0.01 0.01 0.02

Hydrology and Earth System Sciences, 0000, 0001–38, 2006 www.copernicus.org/EGU/hess/hess/0000/0001/
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Table 4. PEST sensitivities based on the TRMSE measure. Dark gray shading designates
highly sensitive parameters defined using a threshold value of 0.1. Light gray designates sen-
sitive parameters defined using a threshold value of 0.001. White cells in the table designate
insensitive parameters.
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Table 4. PEST sensitivities based on the TRMSE measure. Dark
gray shading designates highly sensitive parameters defined using a
threshold value of 0.1. Light gray designates sensitive parameters
defined using a threshold value of 0.001. White cells in the table
designate insensitive parameters.

Model Parameter
SPKP1 SXTP1

1h 6h 24h 1h 6h 24h
SCF 0.006 0.013 0.045 0.006 0.020 0.035
MFMAX 0.000 0.003 0.021 0.000 0.001 0.004

SNOW-17 MFMIN 0.003 0.013 0.094 0.001 0.012 0.033
UADJ 0.001 0.010 0.017 0.000 0.004 0.033
SI 0.000 0.000 0.000 0.000 0.000 0.000

UZTWM 0.000 0.000 0.007 0.000 0.000 0.000
UZFWM 0.000 0.000 0.001 0.000 0.001 0.001
UZK 0.012 0.015 0.087 0.081 0.228 0.362
PCTIM 0.022 0.040 0.074 0.053 0.118 0.216
ADIMP 0.021 0.037 0.070 0.032 0.078 0.150
ZPERC 0.000 0.000 0.000 0.000 0.000 0.009

SAC-SMA REXP 0.001 0.002 0.008 0.004 0.014 0.013
LZTWM 0.000 0.000 0.000 0.000 0.000 0.000
LZFSM 0.000 0.000 0.001 0.000 0.000 0.000
LZFPM 0.000 0.000 0.000 0.000 0.000 0.000
LZSK 0.037 0.023 0.163 0.602 0.050 3.992
LZPK 0.095 0.362 6.791 12.931 42.202 49.762
PFREE 0.000 0.002 0.004 0.009 0.002 0.066

www.copernicus.org/EGU/hess/hess/0000/0001/ Hydrology and Earth System Sciences, 0000, 0001–38, 2006
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Table 5. RSA sensitivities based on the RMSE measure. Dark gray shading designates highly
sensitive (HS) parameters. Light gray designates sensitive (S) parameters. White cells in the
table designate parameters that are not sensitive (NS).
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Table 5. RSA sensitivities based on the RMSE measure. Dark
gray shading designates highly sensitive (HS) parameters. Light
gray designates sensitive (S) parameters. White cells in the table
designate parameters that are not sensitive (NS).

Model Parameter
SPKP1 SXTP1

1h 6h 24h 1h 6h 24h
SCF NS NS S NS NS S
MFMAX NS NS NS NS NS NS

SNOW-17 MFMIN NS S S NS NS S
UADJ NS NS NS NS NS NS
SI NS NS NS NS NS NS

UZTWM NS S NS NS S S
UZFWM NS NS NS S NS NS
UZK NS NS NS S NS NS
PCTIM NS NS NS NS NS S
ADIMP HS HS HS S HS HS
ZPERC NS NS NS S NS NS

SAC-SMA REXP NS NS NS NS NS NS
LZTWM S S S S S S
LZFSM NS NS NS S NS NS
LZFPM S S S S S S
LZSK NS NS S HS NS NS
LZPK S S S S S S
PFREE NS NS NS NS NS NS
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Table 6. RSA sensitivities based on the TRMSE measure. Dark gray shading designates highly
sensitive (HS) parameters. Light gray designates sensitive (S) parameters. White cells in the
table designate parameters that are not sensitive (NS).
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Table 6. RSA sensitivities based on the TRMSE measure. Dark
gray shading designates highly sensitive (HS) parameters. Light
gray designates sensitive (S) parameters. White cells in the table
designate parameters that are not sensitive (NS).

Model Parameter
SPKP1 SXTP1

1h 6h 24h 1h 6h 24h
SCF S NS S NS S S
MFMAX NS NS NS NS NS NS

SNOW-17 MFMIN NS NS S NS NS S
UADJ NS NS NS NS NS NS
SI NS NS NS NS NS NS

UZTWM S S S S S S
UZFWM NS NS NS NS NS NS
UZK NS NS NS NS NS NS
PCTIM NS NS NS NS NS NS
ADIMP HS S S NS S S
ZPERC NS NS NS NS NS NS

SAC-SMA REXP NS NS NS NS NS NS
LZTWM HS HS HS HS HS HS
LZFSM NS NS NS NS NS NS
LZFPM HS HS HS S S S
LZSK S S S S S S
LZPK S S S S S S
PFREE NS NS NS NS NS NS
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Table 7. ANOVA single parameter sensitivities based on the RMSE measure. Dark gray shad-
ing designates highly sensitive parameters defined using a threshold F-value of 460. Light gray
designates sensitive parameters defined using a threshold F-value of 4.6. White cells in the
table designate insensitive parameters. The values in the brackets provide the 95% confidence
interval for the F-values (i.e., the unbracketed value ± the bracketed value yields the confidence
interval).
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Table 7. ANOVA single parameter sensitivities based on the RMSE
measure. Dark gray shading designates highly sensitive parameters
defined using a threshold F value of 460. Light gray designates
sensitive parameters defined using a threshold F value of 4.6. White
cells in the table designate insensitive parameters. The values in the
brackets provide the 95% confidence interval for the F-values (i.e.,
the unbracketed value ± the bracketed value yields the confidence
interval).

Model Parameter
SPKP1 SXTP1

1h 6h 24h 1h 6h 24h
SCF 1.01 [3.36] 1.59 [3.94] 80.67 [25.88] 31.16 [15.89] 1.95 [4.43] 36.40 [16.98]
MFMAX 1.64 [4.12] 1.69 [4.14] 0.08 [2.15] 0.17 [2.19] 0.22 [2.26] 0.02 [2.13]

SNOW-17 MFMIN 3.67 [5.64] 3.60 [5.56] 159.30 [38.12] 0.67 [3.07] 7.53 [7.72] 19.46 [12.22]
UADJ 1.57 [4.07] 0.46 [2.72] 2.43 [4.73] 1.12 [3.39] 5.70 [6.69] 7.24 [7.71]
SI 1.25 [3.68] 1.77 [4.21] 14.68 [10.37] 0.02 [2.02] 0.96 [3.27] 1.49 [3.85]

UZTWM 6.51 [6.95] 5.07 [6.64] 5.79 [6.91] 11.95 [10.01] 11.48 [9.55] 24.92 [14.75]
UZFWM 3.32 [5.65] 50.96 [20.18] 36.71 [17.54] 57.52 [19.80] 10.87 [9.82] 18.39 [13.29]
UZK 18.49 [12.33] 13.29 [10.35] 8.48 [8.33] 40.14 [18.32] 14.87 [11.35] 13.12 [10.30]
PCTIM 194.21 [39.12] 90.92 [28.53] 98.96 [28.63] 6.98 [7.59] 128.03 [32.30] 104.51 [29.32]
ADIMP 6947.19 [676.11] 2260.04 [276.19] 2614.81 [298.68] 65.53 [21.17] 3477.07 [337.78] 3015.45 [415.89]
ZPERC 16.56 [11.51] 8.12 [8.23] 8.84 [8.53] 67.44 [23.35] 3.49 [5.54] 8.61 [8.34]

SAC-SMA REXP 8.44 [7.84] 5.41 [6.35] 7.39 [7.79] 24.78 [14.48] 9.15 [8.53] 16.57 [11.43]
LZTWM 57.69 [21.56] 129.29 [33.27] 111.38 [29.94] 319.17 [51.99] 363.30 [54.66] 265.94 [48.87]
LZFSM 31.63 [16.51] 53.27 [21.40] 27.57 [15.87] 56.09 [22.58] 18.90 [12.43] 11.45 [10.41]
LZFPM 74.06 [24.17] 155.40 [36.97] 215.58 [43.36] 247.36 [47.03] 202.55 [40.96] 291.40 [59.06]
LZSK 9.44 [8.76] 23.60 [13.74] 10.74 [9.42] 1449.10 [158.76] 11.07 [9.14] 25.63 [15.09]
LZPK 6.03 [7.08] 2.40 [4.82] 9.56 [8.49] 274.95 [48.78] 15.32 [11.23] 25.01 [14.44]
PFREE 0.92 [3.33] 1.46 [3.79] 4.10 [6.02] 0.51 [2.75] 1.73 [4.15] 3.61 [5.54]
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Table 8. ANOVA single parameter sensitivities based on the TRMSE measure. Dark gray
shading designates highly sensitive parameters defined using a threshold F-value of 460. Light
gray designates sensitive parameters defined using a threshold F-value of 4.6. White cells
in the table designate insensitive parameters. The values in the brackets provide the 95%
confidence interval for the F-values (i.e., the unbracketed value ± the bracketed value yields
the confidence interval).
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Table 8. ANOVA single parameter sensitivities based on the
TRMSE measure. Dark gray shading designates highly sensitive
parameters defined using a threshold F value of 460. Light gray
designates sensitive parameters defined using a threshold F value of
4.6. White cells in the table designate insensitive parameters. The
values in the brackets provide the 95% confidence interval for the
F-values (i.e., the unbracketed value ± the bracketed value yields
the confidence interval).

Model Parameter
SPKP1 SXTP1

1h 6h 24h 1h 6h 24h
SCF 24.89 [13.93] 10.68 [9.26] 127.93 [31.98] 42.39 [18.18] 49.73 [20.29] 68.71 [23.67]
MFMAX 5.71 [7.06] 3.33 [5.46] 0.55 [2.83] 1.41 [3.78] 2.21 [4.53] 3.99 [5.94]

SNOW-17 MFMIN 13.88 [10.68] 10.01 [8.87] 307.39 [50.39] 1.90 [4.43] 2.76 [4.98] 40.59 [17.49]
UADJ 2.72 [5.09] 0.72 [2.98] 3.17 [5.29] 1.61 [4.16] 5.01 [6.14] 3.02 [5.30]
SI 2.16 [4.66] 2.37 [4.56] 1.05 [3.46] 2.53 [4.94] 1.90 [4.41] 0.91 [3.15]

UZTWM 23.60 [14.38] 46.49 [19.94] 50.91 [20.70] 172.79 [37.04] 131.81 [31.53] 185.37 [38.38]
UZFWM 8.02 [8.42] 15.99 [11.50] 14.87 [11.29] 1.46 [3.78] 0.94 [3.32] 1.27 [3.57]
UZK 5.83 [7.17] 0.86 [3.20] 4.06 [6.11] 4.03 [6.03] 3.18 [5.19] 0.77 [3.19]
PCTIM 63.24 [22.05] 32.18 [15.92] 4.00 [5.82] 1.98 [4.30] 1.66 [4.32] 3.83 [5.84]
ADIMP 932.78 [88.52] 233.16 [46.69] 113.48 [29.47] 99.05 [29.59] 98.70 [28.78] 22.04 [12.39]
ZPERC 12.24 [9.93] 13.55 [10.68] 3.06 [5.18] 8.36 [8.39] 3.31 [5.43] 4.03 [5.79]

SAC-SMA REXP 0.16 [2.22] 1.47 [3.72] 0.41 [2.82] 2.59 [4.87] 8.54 [8.45] 1.66 [4.01]
LZTWM 1011.50 [113.35] 1724.54 [152.35] 1149.27 [128.69] 6151.98 [308.57] 4578.74 [245.50] 5691.06 [316.38]
LZFSM 23.57 [14.29] 24.32 [14.44] 8.16 [8.08] 0.21 [2.29] 1.88 [4.48] 3.84 [5.71]
LZFPM 440.25 [57.37] 234.12 [41.82] 589.22 [70.20] 50.65 [20.87] 118.68 [32.04] 108.44 [28.02]
LZSK 158.91 [35.38] 334.14 [54.35] 213.27 [42.47] 230.30 [43.92] 336.29 [55.11] 170.75 [37.66]
LZPK 30.14 [16.49] 80.71 [26.14] 192.15 [39.37] 151.43 [34.48] 173.46 [38.04] 222.32 [43.27]
PFREE 16.72 [11.31] 15.75 [11.19] 16.59 [11.62] 11.70 [9.32] 17.61 [11.95] 11.44 [9.67]
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Table 9. Coefficients of determination for the ANOVA model. R1 designates a 1st order ANOVA
model that neglects parameter interactions. R2 designates a 2nd order ANOVA model that
accounts for pair wise parameter interactions.

RMSE TRMSE

Order SPKP1 SXTP1 SPKP1 SXTP1

1 h 6 h 24 h 1 h 6 h 24 h 1 h 6 h 24 h 1 h 6 h 24 h

R1 0.667 0.419 0.500 0.456 0.565 0.545 0.484 0.460 0.497 0.704 0.663 0.698
R2 0.779 0.589 0.639 0.711 0.691 0.649 0.732 0.686 0.704 0.854 0.816 0.840
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Table 10. Summations of Sobol’s sensitivity indices for 1st order and 2nd order contributions
to model output variance.

RMSE TRMSE

Order SPKP1 SXTP1 SPKP1 SXTP1

1 h 6 h 24 h 1 h 6 h 24 h 1 h 6 h 24 h 1 h 6 h 24 h

Summation of 1st order effects 0.85 0.84 0.86 0.59 0.77 0.82 0.65 0.67 0.71 0.84 0.83 0.81
Summation of 2nd order effects 0.09 0.14 0.12 0.44 0.23 0.19 0.26 0.21 0.23 0.09 0.11 0.22
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Table 11. Total order sensitivity indices from Sobol’s method computed using the RMSE mea-
sure. Dark gray shading designates highly sensitive parameters defined using a threshold
value of 0.1. Light gray designates sensitive parameters defined using a threshold value of
0.01. White cells in the table designate insensitive parameters. The values in the brackets
provide the 95% confidence interval for the indices’ values (i.e., the unbracketed value ± the
bracketed value yields the confidence interval).
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Table 11. Total order sensitivity indices from Sobol’s method com-
puted using the RMSE measure. Dark gray shading designates
highly sensitive parameters defined using a threshold value of 0.1.
Light gray designates sensitive parameters defined using a threshold
value of 0.01. White cells in the table designate insensitive parame-
ters. The values in the brackets provide the 95% confidence interval
for the indices’values (i.e., the unbracketed value ± the bracketed
value yields the confidence interval).

Model Parameter
SPKP1 SXTP1

1h 6h 24h 1h 6h 24h
SCF 0.00 [0.00] 0.00 [0.00] 0.01 [0.00] 0.00 [0.00] 0.00 [0.00] 0.00∗ [0.02]
MFMAX 0.00 [0.00] 0.00 [0.00] 0.00 [0.00] 0.00 [0.00] 0.00∗ [0.00] 0.00 [0.00]

SNOW-17 MFMIN 0.00 [0.00] 0.00 [0.00] 0.04 [0.01] 0.00 [0.00] 0.00 [0.00] 0.01 [0.02]
UADJ 0.00 [0.00] 0.00 [0.00] 0.00 [0.00] 0.00 [0.00] 0.00 [0.00] 0.01 [0.01]
SI 0.00 [0.00] 0.00 [0.00] 0.00 [0.00] 0.00 [0.00] 0.00 [0.00] 0.00 [0.00]

UZTWM 0.00 [0.00] 0.00 [0.00] 0.00 [0.00] 0.00 [0.00] 0.01 [0.00] 0.01 [0.02]
UZFWM 0.16 [0.03] 0.34 [0.05] 0.35 [0.04] 0.15 [0.03] 0.27 [0.05] 0.27 [0.04]
UZK 0.02 [0.01] 0.04 [0.01] 0.02 [0.01] 0.07 [0.02] 0.03 [0.01] 0.02 [0.01]
PCTIM 0.06 [0.01] 0.05 [0.01] 0.04 [0.01] 0.01 [0.00] 0.05 [0.01] 0.04 [0.01]
ADIMP 0.68 [0.03] 0.50 [0.04] 0.42 [0.03] 0.10 [0.01] 0.49 [0.04] 0.44 [0.03]
ZPERC 0.02 [0.01] 0.03 [0.01] 0.01 [0.01] 0.11 [0.02] 0.03 [0.01] 0.01 [0.00]

SAC-SMA REXP 0.02 [0.01] 0.05 [0.02] 0.02 [0.01] 0.06 [0.01] 0.02 [0.01] 0.02 [0.01]
LZTWM 0.02 [0.01] 0.04 [0.01] 0.03 [0.01] 0.10 [0.01] 0.08 [0.01] 0.07 [0.02]
LZFSM 0.11 [0.03] 0.12 [0.03] 0.07 [0.02] 0.20 [0.03] 0.09 [0.03] 0.06 [0.02]
LZFPM 0.07 [0.02] 0.10 [0.02] 0.09 [0.02] 0.16 [0.02] 0.14 [0.03] 0.11 [0.01]
LZSK 0.05 [0.02] 0.04 [0.01] 0.03 [0.01] 0.40 [0.02] 0.03 [0.01] 0.04 [0.01]
LZPK 0.03 [0.02] 0.04 [0.02] 0.04 [0.01] 0.16 [0.02] 0.04 [0.01] 0.05 [0.01]
PFREE 0.00 [0.00] 0.00 [0.00] 0.00∗ [0.00] 0.00 [0.00] 0.00 [0.00] 0.00 [0.00]

∗ Negative mean value was set to zero
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Table 12. Total order sensitivity indices from Sobol’s method computed using the TRMSE
measure. Dark gray shading designates highly sensitive parameters defined using a threshold
value of 0.1. Light gray designates sensitive parameters defined using a threshold value of
0.01. White cells in the table designate insensitive parameters. The values in the brackets
provide the 95% confidence interval for the indices’ values (i.e., the unbracketed value ± the
bracketed value yields the confidence interval).
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Table 12. Total order sensitivity indices from Sobol’s method com-
puted using the TRMSE measure. Dark gray shading designates
highly sensitive parameters defined using a threshold value of 0.1.
Light gray designates sensitive parameters defined using a threshold
value of 0.01. White cells in the table designate insensitive parame-
ters. The values in the brackets provide the 95% confidence interval
for the indices’ values (i.e., the unbracketed value ± the bracketed
value yields the confidence interval).

Model Parameter
SPKP1 SXTP1

1h 6h 24h 1h 6h 24h
SCF 0.00 [0.00] 0.00 [0.00] 0.01 [0.00] 0.00 [0.00] 0.00 [0.00] 0.01 [0.00]
MFMAX 0.00 [0.00] 0.00 [0.00] 0.00 [0.00] 0.00 [0.00] 0.00 [0.00] 0.00 [0.00]

SNOW-17 MFMIN 0.00 [0.00] 0.00 [0.00] 0.06 [0.01] 0.00∗ [0.00] 0.00 [0.00] 0.01 [0.00]
UADJ 0.00 [0.00] 0.00 [0.00] 0.00 [0.00] 0.00 [0.00] 0.00 [0.00] 0.00 [0.00]
SI 0.00 [0.00] 0.01 [0.00] 0.00 [0.00] 0.00 [0.00] 0.00 [0.00] 0.00 [0.00]

UZTWM 0.04 [0.01] 0.05 [0.01] 0.04 [0.01] 0.08 [0.01] 0.05 [0.01] 0.07 [0.01]
UZFWM 0.04 [0.01] 0.07 [0.02] 0.13 [0.03] 0.01 [0.00] 0.01 [0.00] 0.02 [0.01]
UZK 0.05 [0.01] 0.03 [0.01] 0.02 [0.01] 0.01 [0.00] 0.00 [0.00] 0.00 [0.00]
PCTIM 0.04 [0.01] 0.03 [0.01] 0.02 [0.00] 0.00 [0.00] 0.00 [0.00] 0.00 [0.00]
ADIMP 0.27 [0.02] 0.20 [0.01] 0.10 [0.01] 0.05 [0.01] 0.05 [0.01] 0.03 [0.01]
ZPERC 0.02 [0.01] 0.03 [0.01] 0.01 [0.00] 0.02 [0.01] 0.03 [0.01] 0.01 [0.00]

SAC-SMA REXP 0.01 [0.01] 0.02 [0.01] 0.01 [0.00] 0.01 [0.00] 0.01 [0.00] 0.01 [0.00]
LZTWM 0.30 [0.02] 0.39 [0.02] 0.28 [0.02] 0.68 [0.02] 0.59 [0.02] 0.61 [0.02]
LZFSM 0.12 [0.02] 0.09 [0.02] 0.05 [0.01] 0.03 [0.01] 0.06 [0.01] 0.04 [0.01]
LZFPM 0.36 [0.02] 0.26 [0.02] 0.29 [0.02] 0.10 [0.01] 0.17 [0.01] 0.15 [0.01]
LZSK 0.19 [0.02] 0.13 [0.01] 0.12 [0.01] 0.07 [0.01] 0.09 [0.01] 0.07 [0.01]
LZPK 0.13 [0.02] 0.16 [0.02] 0.14 [0.01] 0.14 [0.01] 0.16 [0.02] 0.19 [0.01]
PFREE 0.02 [0.00] 0.01 [0.00] 0.01 [0.00] 0.01 [0.00] 0.01 [0.00] 0.01 [0.00]

∗ Negative mean value was set to zero
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Table 13. Summary of correlation coefficients from the independent testing of each sensitivity
method’s effectiveness.

RMSE TRMSE

Sets Methods SPKP1 SXTP1 SPKP1 SXTP1

1 h 6 h 24 h 1 h 6 h 24 h 1 h 6 h 24 h 1 h 6 h 24 h

PEST 0.35 0.554 0.302 0.122 0.292 0.223 0.642 0.683 0.446 0.52 0.457 0.455
Set 2 vs. Set 1 RSA 0.372 0.54 0.551 0.127 0.443 0.441 −0.002 0.066 0.296 0.096 0.014 0.082
ideally R = 0 ANOVA 0.199 −0.013 0.03 0.001 0.088 0.046 0.018 −0.01 0.02 −0.018 0.032 0.158

SOBOL −0.076 0.071 0.081 0.189 −0.006 0.041 0.07 0.123 −0.003 0.1 0.045 0.044

PEST 0.718 0.562 0.649 0.622 0.86 0.875 0.459 0.127 0.607 0.117 0.217 0.266
Set 3 vs. Set 1 RSA 0.753 0.537 0.583 0.912 0.731 0.77 0.604 0.514 0.58 0.86 0.845 0.887
ideally R = 1 ANOVA 0.919 0.963 0.998 0.999 0.888 0.999 0.98 0.843 0.858 0.956 0.849 0.884

SOBOL 0.999 0.996 0.997 0.993 0.998 0.995 0.995 0.993 0.999 0.994 0.986 0.993
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Fig. 1. Major SNOW-17 processes and their corresponding parameters. MBASE-Base tem-
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Fig. 7. (a) ANOVA second order parameter interactions based on the RMSE measure. (b)
ANOVA second order parameter interactions based on the TRMSE measure. Circles represent
statistically significant F-values defined using the threshold value of 3.32. The color legends
and shading represent the F-value magnitudes and ranges.
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Fig. 8. (a) Second order parameter interactions based on the RMSE measure computed us-
ing Sobol’s method. (b) Second order parameter interactions based on the TRMSE measure
computed using Sobol’s method. Circles represent interactions that contribute at least 1% of
the overall model output variance. The color legends and shading represent the Sobol indices’
magnitudes and ranges. 3393
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Fig. 9. (a) Comparative summary of sensitivity classifications based on the high-flow RMSE
model performance objective. (b) Comparative summary of sensitivity classifications based on
the high-flow TRMSE model performance objective.
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